Kihagyás

Fizikai tervek 2 - Rendezett állomány

  • Egy mező (rendező mező) alapján rendezett blokkok láncca
    • Tehát a következő blokkban már nagyobbak az elemek (duh)
  • Ha a rendező ls kereső mező nem esik egybe, akkor kopac rendezés kell
  • Ha a kereső és rendező mező egyezik, akkor a bináris keresés működik
    • Beolvassuk a középső blokkot
    • Ha nics benne az A=a rekord, akkor a rendezettség miatt tudod merre kell menni...
  • Ismételd amíg meg nincs, vagy a lánc már csak 1 blokk hosszú

Rendezett állomány - Beszúrás

  • Keresés B/2 , beszúrás után (lehetséges) átrendezés B/2 , tehát B

Beszúráshoz Keresés

  • Gyűjtő (túlcsordulási) blokk itt is van
    • G a gyűjtő mérete
  • Keresés két helyen:
    • \(\log_2\)( B - G) költséggel a rendezett részen
    • G költséggel a (nem rendezett) gyűjtőn
    • Összköltség \(\log_2\)( B - G) + G
  • Ha a G túl nagy a \(\log_2\)(B)-hez képest, akkor történik újrarendezés
    • Rendezés össz költsége B\(~\times~\log_2\)(B)
Üres helyek keletkezhetnek:
  • Félig üres blokkok
  • Keresés után 1 művelet visszaírni új rekordot
  • Tárméret 2*B
  • Keresési idő \(\log_2(\)2*B\()~=~1+\log_2\)(B)
  • Ha egy blokk betelik, vagy a telítettség elér egy kikötött küszöböt, akkor két blokkra bontjuk szét a rendezhetőség miatt

Rendezett állomány - Törlés

  • Keresés + a törlés művelete (esetleg csak törlési bit utáni visszaírás)
  • Túl sok törlés után újraszervezés

Rendezett állomány - Módosítás

  • törlés + beszúrás